Research on Control Strategies of an Open-End Winding Permanent Magnet Synchronous Driving Motor (OW-PMSM)-Equipped Dual Inverter with a Switchable Winding Mode for Electric Vehicles
نویسندگان
چکیده
An open-end winding permanent magnet synchronous motor (PMSM) has a larger range of speed regulation than normal PMSM with the same DC voltage, and the control method is more flexible. It can also manage energy distribution between two power sources without a DC/DC converter. This paper aims at an electric vehicle equipped with OW-PMSM drive system with dual power sources and dual inverters; based on analyzing the external characteristics of each winding mode, we propose a winding mode switching strategy whose torque saturation judgmental algorithm, which is insensitive to motor’s parameters, could automatically realize upswitching of the winding mode. The proposed multi-level current hysteresis modulation algorithm could set the major power source and switch it at any time in independent mode, which accomplishes energy distribution between two power sources; its two control methods, low switching frequency method and high power difference method, could achieve different energy distribution effects. Simulation results confirm the validity and effectiveness of the winding mode switching strategy and current modulation method. They also show that an electric vehicle under the proposed control methods has better efficiency than one equipped with a traditional OW-PMSM drive system under traditional control.
منابع مشابه
Power Sharing and Voltage Vector Distribution Model of a Dual Inverter Open-End Winding Motor Drive System for Electric Vehicles
A drive system with an open-end winding permanent magnet synchronous motor (OW-PMSM) fed by a dual inverter and powered by two independent power sources is suitable for electric vehicles. By using an energy conversion device as primary power source and an energy storage element as secondary power source, this configuration can not only lower the DC-bus voltage and extend the driving range, but ...
متن کاملResearch on a 20-Slot/22-Pole Five-Phase Fault-Tolerant PMSM Used for Four-Wheel-Drive Electric Vehicles
This paper presents a five-phase fault-tolerant permanent-magnet synchronous machine (PMSM) used for electric vehicles. In multiphase fault-tolerant PMSMs equipped with fractional-slot concentrated windings, excessive magneto-motive force (MMF) harmonics can lead to thermal demagnetization of the permanent magnets (PMs). In order to reduce the lower-order harmonics, the origins of the 2-pole ha...
متن کاملLPV Control for speed of permanent magnet synchronous motor (PMSM) with PWM Inverter
This paper deals with the modeling, analysis, design and simulation of a robust control method for a permanent magnet synchronous machine (PMSM) supplied with a PWM inverter based on a LPV (Linear Parameter Variation) standard controller. Under the influence of uncertainties and external disturbances, by a variation of ±150% of motor parameters from the nominal values, the robust performance c...
متن کاملTwo Methods of Fault Detection in the PMSM Electric Drive IGBT- Based Inverter
The paper considers abnormal operation modes of an electric drive power subsystem with permanent magnet synchronous motor (PMSM), such as breakdown and burnout of IGBT-transistor in the three-phase inverter. The effect of these faults on the spectrum and form of the currents in the windings of the synchronous motor was studied. Heuristic algorithms based on the form features of the winding curr...
متن کاملHarmonic Analysis and Fault-Tolerant Capability of a Semi-12-Phase Permanent-Magnet Synchronous Machine Used for EVs
This paper deals with a fault-tolerant semi-12-phase permanent-magnet synchronous machine (PMSM) used for electric vehicles. High fault-tolerant and low toque ripple features are achieved by employing fractional slot concentrated windings (FSCWs) and open windings. Excessive magnetomotive force (MMF) harmonic components can lead to thermal demagnetization of rotor magnets as well as high core l...
متن کامل